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Abstract—The Berkovich indentation test is analysed numerically, using the finite element method,
and experimentally. The results derived are pertinent to indentation of elastic materials and metals
and include universal formulae for the load-indentation depth relation and the hardness, as well as
a detailed study of the mechanical fields involved at loading and unloading. Large strain elastic and
elastoplastic results are compared with small strain ones and similarities, as well as differences, are
discussed in some detail. Special attention is given to a comparison between the characteristics of
Berkovich indentation and the Vickers hardness test. The accuracy of relevant formulae for deter-
mining the elastic stiffness during the unloading process is checked. Experiments are performed
both on the nano- and microscale. Numerical and experimental findings are compared in detail,
especially as regards bulk results.

1. INTRODUCTION

Indentation tests, in many cases referred to as hardness tests, have for a long time been a
standard method for material characterization as they provide a convenient, non-destruc-
tive, experimental method for evaluating basic properties from small samples of material.
The advantage, in comparison with a uniaxial tensile test, is of course the relative simplicity
of the experimental setup. On the other hand, an obvious drawback is the very complicated
mechanical problem arising owing to inhomogeneous deformation in the indented
materials. Therefore, until recently the interpretation of indentation tests has relied heavily
on semiempirical formulae, the work by Tabor (1951) is perhaps the best example of this,
with no or little theoretical foundation. With the advent of modern computers and advanced
numerical methods, however, the understanding of the mechanics involved during ball
indentation (Hill et al., 1989; Kral et al., 1993; Storikers and Larsson, 1994), cone
indentation (Laursen and Simo, 1992), and Vickers indentation (Giannakopoulos et al.,
1994), has increased rapidly in recent years. This new interest in the mechanical behaviour
of indentation testing is to a large extent a result of the increased use of new materials such
as ceramics and composites in structural and other devices. These materials are notoriously
difficult to characterize through uniaxial or other standard tests which in many cases make
indentation testing the only possible alternative for determining their mechanical properties
(Rowcliffe, 1991).

During the last decade a new generation of indentation devices, so-called ultra-low
load or depth-sensing indentation systems [see for example Pethica et a/. (1983) and Loubet
et al. (1984)], have been developed in order to make possible in situ testing of mechanical
properties of materials, such as thin coatings (Soderlund et al., 1994). Even more important
are the new possibilities for quantitative determination of several important mechanical
properties in addition to hardness. This arises due to the continuous recording of both
load and displacement during the entire indentation cycle. In the ultra-low indentation
experiments a three-sided pyramidal indenter (a Berkovich) most often is used, since the
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geometry is easier to fabricate with a sharp tip than the Vickers indenter is. The inclined
angle of the Berkovich indenter (24.7 ) has been chosen in order to obtain the same area
to depth characteristics as the Vickers indenter has. Numerous papers deal with depth-
sensing indentation experiments. which relay on Berkovich indentation (Pethica et al.,
1983 Loubet ¢r «l.. 1984 Soderlund ¢r al., 1994 ; Doerner and Nix, 1986 ; Mayo and Nix,
1988, Mayo ¢t al.. 1990 Oliver and Pharr, 1990). A corresponding theoretical analysis is,
however. almost completely lacking.

We have been able to find two references. Barber and Billings (1990) and Bilodeau
(1992). presenting an approximate solution for Berkovich indentation of linear elastic
materials while. to our knowledge. the corresponding problem of elastoplastic indentation
has been left completely untouched by the scientific community. It is, therefore, the aim of
the present paper to analyse, using numerical methods, the mechanics involved at Berkovich
indentation of elastic materials and metals and to compare these theoretical findings with
carefully designed nano- and microindentation experiments. Special attention will also be
given to the following issues : (1) the validity of well known formulae for determining elastic
material constants during unloading. (2) The effect of large rotations on the results. (3) An
overall comparison between the characteristics of Vickers, Giannakopoulos et al. (1994),
and Berkovich indentation. As a result of this analysis, universal formulae for hardness
and the lpad-indentation depth relation will be presented. Owing to the complexity of the
problem. which is unavoidably three-dimensional, the numerical analysis will be performed
using the finite element method. In the experimental part of the investigation both nano-
and microindentation were carried out in order to obtain indentations of a wide range of
sizes.

1 BASIC EQUATIONS

The geometry of the Berkovich indentation test is shown schematically in Fig. 1.
Basically we attack the mechanical problem resulting when a rigid indenter is pressed into
a homogeneous. isotropic and semi-infinite body. Indentation is considered to take place
under quasi-static and isothermal conditions. Furthermore, bulk constitutive behaviour is
assumed for the indented material which essentially means that the derived results are
meaningful only when the indentation depth is much greater than the characteristic micro-
structural size of the indented material.

With these basic assumptions in mind. and within a small strain formulation of the
problem. linear elastic materials are described constitutively by Hooke’s law as

I v
g, = Oud, = 004 |ews 1
T 4| L0y | 2y A/} ki ( )

where in ordinary notation a,, 1x the Cauchy stress. E (>0) is the Young’s modulus, v
{(—1 < v<0.3)is the Poisson’s ratio. ¢, 1s the Kroneckers identity tensor and ¢, is the
small strain tensor.

At incremental, rate-independent. elastoplastic material behaviour, eqn (1) must be
replaced by the Prandtl-Reuss cquations reading

C v 37,0, E/(1+v)
E 0,0, ~ 5,8, — —TuowE+Y)
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In egn (2). H(= da de,) is the instantaneous slope of the uniaxial nominal stress, o, vs the
engineering (nominal) plastic strain. ¢, = ¢ —¢ ' £, given from a simple uniaxial compression
test (0 = g(&)). The dot superscript indicates time variation. Furthermore, o, = (Eo;,-ojjr)"’z

is the cflective stress according to von Mises and o), = 0,,—0646,,/3 is the deviatoric stress.
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(a)

(b

Fig. 1. Schematic of the geometry of the Berkovich test. cay Top view. (b} Side view.

At incremental elastoplastic deformation. the accumulation of total plastic strain is given
by

b = (‘;;’:E‘,;E“} dr. (3)

It should be emphasized that egn (2) is only vahd at plastic loading when g, = g(¢,) (the
initial yield stress is given by ¢, = ¢(0)). At clastic loading or unloading, eqn (1) must be
used, formulated in incremental form.

Within linear kinematics. the strain tensor. o .1~ connected with the displacements. u,,
as

o= o X o« dn JYy 2 4

where partial differentiation is with respect to the reference fixed Cartesian system X,. In
absence of body and inertia forces. the equilibrium equations to be satisfied read

(o,

X (5)

Together with the boundary conditions. 1o he specttied later, egns (1)--(5) fully describe,
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within a small strain formulation. the clastic and elastoplastic boundary value problems
presently under investigation.

Giannakopoulos ¢r al. (1994). in their numerical analysis of the Vickers indentation
test. concluded that the essential parameters of the problem were well captured within a
small strain formulation of the problem. Presently, with an inclined angle of 24.7°, compared
to 22 at Vickers indentation. even larger rotations are enforced at the contact area and it
seems advisable also in this case to compare the small strain results with corresponding
ones derived using a large strain formulation. To this end, essentially the same observation
as by Giannakopoulos er a/. (1994) was made as the rate of rotation of the principal axes
of deformation equals the rate of rigid body rotation, a hypoelastic formulation of Hooke’s
law was relied upon yielding

E | v
T, = A0, + 2= 0,04 | Dy (6)
: [ 2v

11

For elastoplastic deformation the large strain formulation of Prandtl-Reuss equations
reads

3u,tE (1 +v) |

iy £
BT l+v /

Ineqns (6) and (7). D, 1s the rate of deformation and 7,,1s the Jaumann rate of the Kirchhoff
stress, 7,,. related to the Cauchy stress as 1, = Jo,, where J is the determinant of the
deformation gradient tensor. 7. and 1, being Mises effective stress and the deviatoric stress
respectively. defined as in the small strain formulation of the problem. Furthermore, in eqn
(7) H(= dt/d¢;,) s the instantaneous slope of the uniaxial compressive Kirchhoff stress, z,
vs the logarithmic accumulated plastic strain. ¢, defined in accordance with eqn (3). As in
the small strain analysis, the elastoplastic constitutive specification, eqn (7), is only valid at
plastic loading when 1, = 1(¢,) (the initial vield stress is given by 1, = 7(0)). At elastic
loading or unloading. eqn (6) holds.

To sum up the governing equations. in the large strain formulation. D, is connected
with the material velocity, i. as

.
E (0,0 - .

F i R (R M

N A

Dy. (7)

D, =l O~ iy 0x,) /2, (8)

X, being the current position of a4 material point initially at X, and in absence of body and
inertia forces the equilibrium equations to be satisfied are

N (9)

(B

As regards boundary conditions. the surtace of the half-space outside the contact area
is assumed traction free and as a result

a0 =00 =) (10a)
g.n = 0. (10b)

where #, 15 the outward unit normal vector of the half space (defined in the deformed
configuration at large strain analysis). Presently. no friction is considered between the
indenter and the material, and as a consequence, eqn (10a) still holds at the contact area
while eqn (10b) 1s formally replaced by unilateral kinematic constraints given by the shape
of the Berkovich indenter as shown in Fig. 1.
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3 NUMERICAL ANALYSIS

The boundary value problems presented in the previous section are fundamentally
very difficult to attack for a number of reasons. Not only are they unavoidably three-
dimensional, but they also involve material and geometrical nonlinearities as well as a
contact problem with a moving contact boundary. Therefore, numerics have to be relied
upon extensively and in particular the finite element method. To this end, the ABAQUS
general purpose program (1992) proved advantageous to use. Furthermore, remembering
the similar features involved at Vickers and Berkovich indentation basically the same
numerical considerations need to be addressed when analysing the mechanical behaviour
of the two hardness tests. With this in mind, we followed the numerical approach developed
by Giannakopoulos er a/. (1994) in their analysis of the Vickers hardness test regarding
such features as meshing. integration, numerical testing, far-field boundary conditions and
contact analysis.

One of the main differences, regarding geometrical considerations, between the present
analysis and the one performed by Giannakopoulos er al. (1994) is the symmetry involved
in the problem. As depicted in Fig. 1a, the symmetry at Berkovich indentation is six-fold,
only one sixth of the body needs to be modelled, while an eight-fold symmetry is present at
Vickers indentation. In order then to retain the numerical accuracy achieved by Gian-
nakopoulos er al. (1994), more elements were required when discretizising the half-space.
The resulting finite element mesh used in the elastoplastic analysis is depicted in Fig. 2
which consists of 10,850 eight-noded isoparametric block elements and 12,400 nodes. This
compares with 9914 nodes and 8524 eight-noded elements needed in the analysis of the
Vickers test (Giannakopoulos er al. 1994). Inside each element, the displacements were
approximated using trilinear shape functions. In relation to Fig. 2a, the indented body is
bounded by five characteristic surfaces 1-V. The plane 1 is the indented surface with the
contact elements, the cylindrical surface V is traction free and the planes II-1V can only
deform in their own planes. Owing to the severe nonlinearities present in the problem,
loading had to be applied stepwise. This procedure was then continued until steady-state
conditions were found for the load-indentation depth relation and the hardness, as well as
steady-state shapes for stress and strain isocontours. In all calculations, this required a
contact area between the indenter and the material that was resolved by at least 50 elements.

Formally, the indentation load was given by

~

P=—| o.Ndl (11)

JI

where I', is the actual area of contact and A, is the inward unit normal vector to the rigid
surface of the indenter. The average pressure is then calculated directly, using the projected
contact area A4, as

Pa=P A, = P (I cos247 ). (12)

It remains then to specify the materials used in the numerical analysis. For the elastic
calculations, we constantly used the value 2.1 x 10" Pa for Young’s modulus E, noting that
E in this case is only a scaling factor, while Poisson’s ratio was given values between 0 and
0.5. For the small strain elastoplastic calculations basically the same materials as the ones
considered by Giannakopoulos et al. (1994) were analysed. namely aluminium 7075-T6
and 6061-T6. These materials are common rate-independent construction materials and
well characterized in compression by Maiden and Green (1966) for plastic strains up to 6
and 7.5%, respectively. At higher strains, for rcasons of generality (through parametric
study) of the results, we considered different tvpes of hardening. The small strain constitutive
characteristics of the materials analysed are depicted in Fig. 3 where materials A and B
correspond to no plastic hardening at high strains. while linear hardening is represented by
materials C and D. For materials with no hardening at high strains, the ultimate stress will
be denoted ¢,. For the large strain elastoplastic calculations we used the constitutive
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Fig. 2. The FEM mesh used in the numerical calculations. (a) General view. (b) Detail of the mesh
at the region of contact. 10.850 ¢cight-noded elements (12,400 nodes).

characteristics of material C. 7075-T6 with linear hardening. In this case, however, the
nominal uniaxial compression curves in Fig. 3 had to be translated to the true stress vs
logarithmic strain curves by the relations t = a(1—¢.) and ¢, = —In(1 —¢,). As a final
comment it should be emphasized that both uniaxial tensile tests on 7075-T6, Hallbick
(1993). and presently performed uniaxial compression tests on 6061-T6 indicated very close
to nominal linear hardening at large strains. For this reason, only materials C and D in
Fig. 3, representing the actual nominal compression tests of Al 7075-T6 and 6061-T6
respectively, will be used for comparison with experimentally determined hardnesses.

4. EXPERIMENTAL APPROACH

The materials indented were Al 6061-T6 and Al 7075-T6. As mentioned earlier both
uniaxial tensile and compressive tests were carried out on these materials in order to fully
describe the plastic hardening present at high strains. The materials were polished and
etched in order to measure the grainsizes. Both materials showed elongated grains. The
grain size in the rolling direction was approximately 350 um, and 15 ym in the perpendicular
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Fig. 3. Uniaxial nominal compression curves for the materials used in the numerical calculations.

direction. This microstructure creates some slight elastic and plastic anisotropy. The inden-
tation tests were. theretore. performed in different orientations in order to average out the
grain anisotropy. Of course. for materials exhibiting strong elasto-plastic anisotropy we
expect a pronounced influence of it on the indentation deformation (the stiffer direction
being less deformed). resulting in a very unsymmetric residual imprint. Such imprints were
not found from the present levels of indentation of the particular aluminium alloys tested.
At extremely small indentations. nanoindentation. all experiments were performed in indi-
vidual grains but the results seemed independent of the grain size effect. This indicates that
the grain boundaries do not act very differently from the interior grains under the present
deformation pattern. Also, the development ot ship lines is relatively easy and in many
directions (Al is face-centered cubic) to ensure the validity of classic Mises elastoplastic
modelling. Before performing the indentation experiments. the specimens were mechanically
polished with subsequently finer diamond slurrics down to | gm. The final polishing was
made with 0.04 um colloidal silica in order to reduce further the surface damage.

The indentations were made with a depth-sensing indentation system (Nanoindenter
I, Nano Instruments Inc.. Knoxville. TN. U.S. Ay equipped with a Berkovich indenter, as
well as by using a universal testing machine (Model 1361, Instron Corp.. High Wycombe,
U .K.) equipped with Berkovich and Vickers indenters. The loads used in the ultra-low load
indentation experiments were 100. 75, 50. 25 and 10 mN. respectively. The corresponding
loading rates were chosen to give u loading and unloading time of 33 s, respectively. At
maximum applied load a dwell time of 20 s wus inserted to achieve equilibrium and to get
a more well defined slope of unloading. At 90% of the unloading another dwell time of 20
s was implemented to check and compensate tor the thermal drift in the system. Loads of
10, 15,25, 500 and 1000 N. respectively, were used tor Vickers indentation. An indentation
load of 25 N proved to be the upper limit duc to the dimensions of the Berkovich indenter
presently used. The loading and unloading rates were again chosen as to give a loading and
unloading time of 33 s. respectively. A 20 s dwell time was applied at maximum loading for
the Vickers indentation as well. For cach load. material and indenter geometry approxi-
mately 10 indentations were made. The diamond holder and the specimen support were
carefully designed to minimize the indenter svstem comphance. Continuous load—dis-
placement curves were recorded for all indentations
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The data obtained from the Instron machine were corrected for the additional machine
complience and for the zero-offset in displacement. The zero-offset was found by fitting the
loading curve to a perfect quadratic polynomial. The hardness at maximum load was
calculated using the relation H = P (24.56/ry for the Berkovich indenter and
I = P(24.50#7) for the Vickers indenter. i.¢. by assuming ideal tip geometries and neg-
lecting the effect of piling-up and sinking-in along the contact boundary. It should be
pointed out here that as continuous load-displacement curves were recorded during all
experiments the value ot 4. the indentation depth, used when evaluating the experimental
results was. indeed, the true total depth including both elastic and plastic contributions.
Hardness numbers were also derived from optically measured values of the real projected
contact area, including irregularities. using an image processing system (Quantimet 500,
Leica Cambridge Ltd. Cambridge. U.K.). as well as in the traditional way from recovered
side lengths. L, by assuming a perfect equilateral triangle. 4 = \/3L3/4. The elastic stiffness
was calculated using the solution 1o the elastic punch problem by assuming flat punch
geometry.

B dp

E(lovy = A
( v d/? (( N mu\)

where, according to King (1987). ¢ is 1.167 for the Berkovich and 1.142 for the Vickers
geometries, respectively. The stiffness dP/dfi was calculated from the first third of the
unloading as previously suggested by Doerner and Nix (1986) and Oliver and Pharr (1992)
as well as from the first tenth of the unloading force-depth curve.

5. RESULTS AND DISCUSSION

In the following, the numerical and experimental results presently derived will be
presented in detail and compared with pertinent results from earlier analysis, in particular
with similar results derived by Giannakopoulos er «f. (1994) (GLV) relating to the Vickers
hardness test. The results presented below. for elastic and elastoplastic indentation, include :
(1) bulk results featuring load-indentation depth relations and hardness formulae, (2) local
results featuring the deformation mode at the contact boundary and the shape of the
contact ared. (3) isocontours lor different field variables (Cauchy stress invariants and
accumulated effective plastic strain). In the elastic case a somewhat detailed consideration
of the stress singularities will be presented while characteristics of the initial loading curve
and the size of the plastic zone will be commented upon when dealing with elastoplastic
materials. Furthermore. similarities and differences, between small strain and large strain
results will be exemplified and properly addressed.

.1 Elastic cuse

Judging from the stress levels presented below. purely clastic indentation of materials
with 1dealy sharp indenters is very hard. if not impossible, to achieve in practice. Having
said that. however. we still believe that clasticity can be of interest in some particular cases,
There do exist materials for which the clastic results derived here can be pertinent, for
example cellular solids (Gibson and Ashby. 1988). and rubbers. The elastic results can, of
course, also serve as a numerical guideline for other investigations.

In the Berkovich indentation test. as presently stated, the indentation depth. 4, is the
only characteristic length of the problem. Dimensional considerations then indicate that
the average pressure between the indenter and the material must be constant throughout
an indentation test. We performed a number of calculations for different values on /4 and
Poissons ratio v (v was varied between 0 and 0.5) and found numerically, by curve fitting,
the relationship
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£
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for the small strain solution. Obviously a constant value on the contact pressure indicates,
by geometrical arguments. a parabolic relationship between the total load P and the
indentation depth /4. Indeed. this was also found numcrically reading

E
D= 218911 021v—0.00h 0410 Lhe (14)
[ -

When comparing the results from egns (13) and (14) with corresponding ones derived using
a large strain hypoelastic formulation of the governing equations. very small differences
were found. In fact. the total load at a given value on /i proved to be exactly the same while
the average pressure was somewhat lower. 4.8, in the large strain solution. The large
strain average pressure results for the Vickers test were only 0.1% lower.

As already discussed. experimental verification of eqns (13) and (14) cannot be found
in the literature as Berkovich indentation of metals undoubtedly includes plastic effects
even at small indentations. Some previous theoretical results by Barber and Billings (1990)
and Bilodeau (1992) are, however. relevant tor a comparison. It should be remembered
though that these authors do not correctly describe the influence of Poisson’s ratio in their
calculations which essentially enters their equations only through E/(1—v?) and, therefore,
a direct comparison between our and their results 15 not possible to perform. However, the
reported results by Barber and Billings (1990 where only total indentation load was
calculated, and by Bilodeau (1992) where both total indentation load and average constant
pressure were calculated. are within the range ot cgns {13) and (14) when v varied between
0.0 and 0.5.

Some comparison with GLV results for the Vickers hardness test also seems to be in
order. Explicit calculations of the total load and the contact pressure, for the same inden-
tation depth. then reveal a very close agreement between the results derived for the two
indenters, with Berkovich values being slightly higher. but less than 5%. This is in accord-
ance with expectations remembering that the Berkovich indenter has been designed in such
a way that it would include the basic features ot ¢ Vickers indentation test.

Next we turn our attention to explicit field results. and especially the stress invariants,
as shown in Fig. 4. Here. both small (Fig. 4a) and large (Fig. 4b) strain results for the von
Mises effective stress as well as large strain results for the hydrostatic stress (Fig. 4c) are
depicted. Quite clearly the large and small straimn socontours are very similar, which is
somewhat surprising considering the high strains ¢ > 70%) involved. The similarities with
the Vickers fields. as presented by GLV. are ulso obvious although a close inspection of the
1isocontours indicates more pronounced stress singularities at Berkovich indentation. A
detailed analysis of the second Piola -Kircholl contact tractions, S»s, shows that, for small
strains and v = 0.3, they can be asymptotically approximated as

)

Sedlo v E = 02503ntr in ] 0. o —7i3, (15)

[

where /~ = X7+ X1 and tan¢ = Y. X, The range of validity for eqn (15) is r < 4/2 and
-3 < ¢ < —092 11 3). In the Vickers analyvsis. GLV. the singularity in the ¢-direction
was found considerably weaker. in fact 1t was logarithmic. This finding 1s in some accord
with results by Dukino and Swain (1992) who found the Berkovich test more favourable
when crack initiation and growth was warranted. although it should be underlined that
those results are strictly valid only for ceramics Regurding the singularities present in the
large strain analysis. these can actually be determined analvtically using the results by
Williams (1952) which give a stress singularits o "7 in the radial direction, r being the
distance from the edge in the deformed conhiguranon This s stronger than what was found
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tor elastic Vickers mdentation. » and s due to the smaller dihedral angle present at
Berkovich indentation. Numenicaily . we tound the stress singularity to be » *** with range
of validity r < 11 2.

The contact area. 10 the small strain solution, differs substantially from a triangle. For
0 < v < 0.5, the projected contact contours were found numerically by curve fitting to be
parts of hyperbolas that Tollowed. within 4% accuracy. the relation

v\ XD
. (27()) =L (16)

Comparison ol egn (163 with the houndary clement results by Barber and Billings (1990)
shows very good agreement. within 1 374, while Bilodeaus (1992) assumption of a tri-
angular contact arca renders a direct comparison with the present results irrelevant. For
the large strain solution the contact area proved to be slightly larger (5%) but with the
same shape as in the small strain sofuton. Note that the large strain results for the Vickers
test showed a contact arca almost the same as for the small strain results.

Finallv. the detormation ficid depicted in Fig. 4b (and in Fig 4¢) deserves some
comments. In all elastic calculauons uneven material sinking-in occured at the contact
contour. Furthermore. 1t iy interesiing to note the very small tangential displacements at
the contact arca. Tlus [eature of the solution Is important as it. to some extent, justifies the
present assumption that I'riction does not play a major role during the indentation process
(at least not 1n the clastic case)
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5.2. Elustoplastic cuse

Depth-sensing indentation can be a very uselul tool tor determining the constitutive
behaviour of the indented material. Basically. the material parameters pertinent to plasticity
are determined during the loading process by examining the hardness. here defined as the
average pressure at maximum load, and the relation between the total load and the inden-
tation depth. while the clastic stiffness 1s given by the mitial slope of the unloading curve.
Furthermore. the mechanical fields involved are also of definite mterest as they can provide
important information related to. for example. crack formaton and growth.

The size and shape of the contact arca is of fundamental importance when analysing,
both numerically and experimentally. an imdentation test. 1t therefore. seems natural to
start the presentation of the results by discussing this parameter. For this purpose the
contact arca at Berkovich indentation. in the undetfornwed configuration. is shown in Fig.
5a for aluminium 7075-T6 (material C)1. As was the case for afl materials analysed the
contact area proved to be an almost perfect trangle v the andetormed (projected) con-
figuration. Howcever. a close inspection of the displacement ficlds showed that the dis-
placement in the X',-direction, «,. 1~ unevenly distributed along the boundary of contact.
Essentially «, takes onvery small values along plance T (wee Frg. 2a resulting in a somewhat
curved boundary of contact in the deformed configuration bxperimental evidence of this
numerical finding 1s depicted in Fig. 5b. clearhy showing the bulging of the contact boundary
at the sides of the imprint. As a consequence of this eflect the detformation mode changes
from piling-up at the center of the edges (side 1 1o sinking-in near the corners (plane 111},
determined by actual value of the displacement i at the contact boundary. regardless of
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Fig. S. Continued. (c)
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the material charactenisties (pile-up was. however. somewhat surpressed in the presence of
plastic strain hardening). It should be pointed out that the deformation fields discussed
above are shown indirectly in Figs 7b. 8b and 9b as the stress and strain fields given by the
large strain formulation of the problem are presented in the deformed configuration (very
little or no dilference was found compared to the small strain results).

Fundamentally different results were found by GLV for the Vickers hardness test. In
this case the contact arca was almost a perfect square. both in the undeformed and in the
deformed contiguration. The square shape was veritied experimentally as depicted in Fig.
Sc. Naturally then. and n contrast to the Berkovich results, the deformation mode is the
same all along the contact boundary but also very dependent on the type of hardening
present at high strains

The deformation in the Berkovich indentation. namely piling-up at the middle of the
side and sinking-in at the corner. is an encouraging resuit as the contact area is then given
by the idealized relation {1 = 24 3647 at maximum load. remembering that the effects of the
two deformation modes cancel each other. Indeed. the numerically caleulated contact areas
were very close to this idealized relation for all materials investigated. This was also
confirmed by the experiments. Figure 6a shows the hardness results for A17075-T6 and it
is seen that the hardness calculated from the residual area (taking the bulging into account)
almost equals the hardness obtained trom the arca derived at maximum load through the
above mentioned area equation. Also note that these experimental hardness numbers are
in excellent agreement with the hardness numbers obtained from the FEM calculations,
which are based on the actual projected contact arca at maximum load. On the contrary,
the area calculated in the traditional wayv. from residual side length assuming a perfect
equilateral triangle. strongly underestimates the contact area (since bulging is not accounted
for) and thus gives rise to an overestimated hardness. Finally, it is seen in Fig. 6a that the
indentations at indentation depths smaller than 1600 nm. in the nanoindentation regime,
show a marked size effect. whereas the indentations deeper than 13.000 nm seem to be load
independent. On the average the large indentations cover several grains, at least in one
dimension, and the bulk constitutive behaviour can be considered closely fulfilled. A1 6061-
T6 showed similar results. with a slightly larger difference. 4%, between the calculated
hardness value and the hardness values derived from maximum depth and from the optically
measured real residual area.

The numerical findings discussed above e important consequences when deriving
a universal formula tor the hardness us the effect of piling-up. or sinking-in. does not have
to be addressed. Instead. essentially following the same arguments as GLV, we started from
a semi-analytical expression by Johnson (1970). resting on the spherical cap approximation,
and included the mfluence of the plastic hardening by a truncated power series. The
outcome. derived from the small strain numerica! results and for low strain hardening,
reads

Etan24.7 °

”, 02450 (1 +a, a4 | - In
3a

(17

In eqn (17) o, 15 the stress level at a plastie strain o1 30% which could be characterized as
a representative strain in the same way as n the Vickers test while the angle 24.7 is chosen
in the spirit of Tabor (19311 due to the actual value of the inclined angle of a Berkovich
indenter. Furthermore. through geometrical considerations and remembering the discussion
above about the size and shape of the contact area, eqn (17) determines directly the
corresponding formula tor the total indentation foad as

P=1273an247 ) g (l -6 a )( | +In

Ftan24.7 \ .
)h'. (18)

\
/

The numerical accuray ol eqn {171 is shownm Fig 6b_as for explicit numbers all calculated
hardnesses and indentation foads tall within 3w of the ones given by eqns (17) and (18).
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Fig. 6. Comparison between numerical and experimental results. (a) Hardness vs indentation depth
for aluminium 7075-T6 (material C). (- --) Large strain numerical result. (A) Experimental results
derived from the indentation depth. () Experimental results derived from the real projected
residual contact area {measured optically). ((J) Experimental results derived assuming the contact
area to be a perfect triangle (side lengths measured optically). Each symbol represents five to 10
indentation experiments. (b) Normalized hardness. f = Hio (1 +In(Etan 24.7°/3¢,)) vs normalized
uniaxial nominal stress. ¢ = g(&,) o.. at a plastic strain 0.3. (——), eqn (17). (---), eqn (17) scaled
according to the large strain results (a factor of 1. 1). () Small strain numerical results. ((J)
Experimental results. (¢) Indentation load vs indentation depth for aluminium 7075-T6 (material
C). (——). egn (18) scaled according to the large strain results (a factor of 1.1). (+) Experimental
results from the Instron general purpose testing machine. (d) Normalized indentation load, P/P .y,
vs normalized indentation depth. /i /i,... for aluminium 7075-T6 (material C). () Large strain
numerical results. (@) Experimental results from the nanoindenter, the maximum load ranged from
0.01 1o 0.1 N (Continued opposite.)
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Further compurison with the farge stram results. also presented in Fig, 6b. showed that the
small strain calculations underestimate the total load by 10% while they correctly described
the contact arca. This is indeed surprising as the same 10% accuracy was found by GLV
for the Vickers case using a completely different umaxial stress strain curve. This suggests
thategns (17) and (I8) are valid also for a complete (large strain) description of the problem
if they arc appropriately scaled by a factor 1.1 This finding 15 also experimentally verified
as depicted in Fig. 6b. and as discussed above tor Fig. 6a. showing excellent agreement
between the experimental results (steady state) and the scaled version of eqn (17).

In Fig. 6¢. the lurge stran (scaled) version of eqn (18) is compared with the exper-
mmental results for aluminium 7075-T6 showing good agreement. Only the loading sequence
1s used for comparison though as again. i order o wyoid indentation size effects. the
experimental results were taken from the Instron machine at maximum indentation depths
larger than 15 gm. The experimentally determined constant ol proportionality between P
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Fig. 7 Steady state von Mises elfective stress for aluminium 7075-T6 (material C) at maximum
load. Units are in Pa. The indentation depth /i is also shown. (a) Small strain results. (b) Large
strain results. The deformation s also shown. (Continued opposite.)

and A showed large variations for mndividual indentations but the average of 15 inden-
tations. 4.65+0.97 x 10", came close Lo the calculated value, 4.47 x 10'°. The variations
are probably due to local fluctuations of the mechanical properties depending on grain
orientation and the presence of microstructural features such as grain boundaries and
defects.

The explicit results derived tont egns (171 and (18) proved to be very similar, within
5%, to corresponding ones presented by GLV for the Vickers hardness test. This was
expected. as previously discussed. remembering that the Berkovich indenter was designed
with the characteristics of the Vickers hardness test in mind. When inspecting our own and
GLYV results in some more detail we found that the Vickers hardness were slightly higher
than the Berkovich ones for strain hardening materials while the opposite was found for
materials with no strain hardening at high plastic strains.

The Instron machine proved. as also indicated by the scatter of experimental results
in Fig. 6¢. to be less accurate at unloading and in order to make an appropriate comparison
between numerical and experimental results also in this case we used normalized nano-
indentation curves (maximum load ranged from 0.01 to 0.1 N). The outcome is depicted in
Fig. 6d. Obviously. the nanoindentation results differ somewhat from the numerical findings
at loading. This can certainly be cxplained by the indentation size effect, an additional
length (e.g. microstructure. surtace eifects. imperfectness of the diamond tip) enters the
problem. discussed above. However. the normalization forces the two sets of results to
coincide at the maximum load and we believe that at least for unloading the comparison is
a proper one. Indeed. this assumption 1s verified by the experimental results in Fig. 6d
where the different experimental curves almost coincide at unloading, indicating that the
indentation size effect is much less pronounced at elastic deformation (no reverse plasticity
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occured during unloading). Cleariv. according to Frg 6d the numerically calculated loads
are very similar to the experimental ones except close to complete unloading. The difference
in the final indentation depth is. however. onlyv 27w and remembering that the calculated
unloading sequence is very sensitive 1o the plustic hardening at high strains, as also discussed
by GLV (1994), the outcome of this companson must be considered as satisfactory.

With a method for determining the plastic properties now presented and largely verified
experimentally. a corresponding method tor the clasue properties deserves some attention.
To this end, experimentalists hasve favoured a tormula derived by Sneddon (1945) relating
to elastic indentation of a flat circular punch i order to determine the elastic stiffness using
the initial slope (dP-d/y of the unloading curve. In view of what has already been discussed
in relation to the shape of the elustic and the clastoplastic contact area, using the circular
punch results seems 10 be a somewhat crude approvimation. Especially so as King (1987)
has derived corresponding tormulac tor geometrically different flat punches and among
them the triangular one which reads

{ i
. ‘ (19)

o Vol 7 i I(‘Ar.‘l ,‘i RV

where A,,.. 1s the true contact arca it maximuny mdentation load. When comparing the
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clastic stillness. derved from the exphicit salues used m the finite element calculations, with
the numerically determined ones fusing e (190 for the materials A D the error proved
tobe =073 20 653", (30" for the Lirge strimn analysis) and 2.0% (3.8% for the large
strain analysis) respectively GEN miade the same analysis tor the Vickers test [in case of a
square contiact arci the constant 1167 m egn €149) changes to 1.142), and found similarly
very good agreement for mterials work o hardenmg at high strains but considerably worse
results for lincar stratn hardenine materinds. manly owing to the sinking-in of material
occuring all around the boundary o contact. Regarding the experimental results, the
[nstron machine proved 1o be. as mentoned carher. insulliciently accurate in the unloading
scgment due 1o the farger scatter of resulis, and 'n order to check the validity of eqn (19)
we used nanoindentation results The oxperimentally determined elastic stiffnesses showed
almost perlect agreement with the ones obzained from uniaxial compression tests, although
a shight size effect wis seen also v this case ot the lowest loads. and an encouraging
conclusion ol the present study o~ 1t the elastne flat punch unloading formula, egn (19),
can be relied upon to determine the vloastie stithhwess trom a Berkovich test in materials like
Cand D m Fig. 2 Note, however, thar ege 19y contains the real projected contact area at
maximum load. which can be caleutnes! ccerding 104 = 24,56/ as discussed above, so
this method differs from the commonly gsed one where the extrapolated contact depth is
used (Docerner and Niv, 1986 Oliver ond Phiarr 1992)

At this point somie commaenis abatt the elistic recovery of the imprint at unloading
seems appropriate. Asin the Vickher cise. e olastic recovery was much more pronounced
tor hardening materials. Lxpber valaes of ihe rauo between the recovery at complete
unfoadig and the masimum aadentiion depth were found 1o be for material A, 9.6%. for
material Bo 2 3% sor material €17 57 01290 for the large strain formulation), and for
matertal Do 7 10" These vadues e ahnost adentceal o the corresponding Vickers result
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and are apparently closehy refated 1o the actuai ~soess evels ar Ingh plastie strains. This was
also confirmed (within 3%¢) by the oxpernientad foad displacement curves, which show
that the elastic recovery i depth i~ about 107 o Alen6l whereas it is about 15% in
A17075 (see Fig. 6d). This observation v accendance with the larger hardening that
A17075 undergoes m umanial detormation comaad oo NGOG as shown in Fig. 3. The
calculations also showed that the vesidual mmprm e e the material after complete
unloading gave essentially the same projecied area o the one found numerically at
maximum indentation depth. The deformatior codds tor the Large strain calculations. are
shown in Fig. 10a and ¢.

To conclude then the discussion about b wond veal results 1t remains to comment
upon the extent and shupe of the plastic 7one a1 Berkovawhnmeentation. For strain hardening
materials the elastoplastic boundary. usmyg o ~small stan formulation, is shown in Figs. Sa
and 7a. First of all it ix obvious that the zone of plesticalls detormed material is very close
to spherical in accord with the spherical cap approvmution by Johnson (1970). Secondly,
there is a very good agreement hetween the extert oo the plastic zone at Vickers indentation,
GLV (1994). and the onc presenthy derved  The faree stram results {Fig. 7b) show a
somewhat larger radius ol the plastic zone. aprroaniiens Y 3" in the Xy-direction. but
essentially of the same shape as i bie a0 Tae <o o i plastic zone 15, however. strongly
dependable on the constitutive propertes o tie  wieriad o a stratghtforward comparison
between material A (no hardeningy cond srarcons U linear st hardening) shows a 35%
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Fig. 9. Steady state accumulated etfective plastic strain for aluminium 7075-T6 (material C) at
maximum load. The indentation depth /i is also shown. (@) Small strain results. (b) Large strain
results. The deformation is also shown. (Continued opposite.)

increase of the plastic radius when stram hardening is present. Furthermore, this result is
also dependabie on the yield stress. as a comparison between material B and D shows only
25% increase of the radius in the presence of strain hardening.

We will now turn our attention to the mechanical stress and strain fields involved at
Berkovich indentation. For this purposc. we will present results pertinent to Al7075-T6,
material Cin Fig. 3. and merely comment upon differences, and similarities, in comparison
with the other materials. To start with. the tield characteristics during the loading process
will be discussed. The stress isocontours presented are the von Mises effective stress (Fig.
7) and the hydrostatic pressure (Fig. ¥). while the accumulated plastic strain is shown in
Fig. 9.

Regurding the isocontours tor the von Mises effective stress () at loading, as depicted
in Fig. 7. they all seem to follow a very regular patiern. The only exception was found in
Fig. 7b at the contact area and in a small region close to the edge of contact where in fact
unloading occurs. Otherwise. however. almost radial stress distribution was found, which
is very interesting from a number ol uspects. In particular. it indicates that an analysis using
deformation theory of plasticity could give satistuctory results not only for bulk values but
also for a more detailed description of the mechanical fields involved. In fact, some pre-
liminary calculations we performed using a Ramberg Osgood deformation plasticity consti-
tutive equation do indeed point in that direction. Furthermore. some differences in magni-
tude, but obviously not in shape. can be tound between small strain. Fig 7a, and large
strain, Fig. 7b, results. Isacontours pertinent to Vickers indentation of material C, GLV
(1994), showed essentially the same pattern as the corresponding ones in Fig. 7a. Substantial
differences were found. however. when comparmyg the curves in Fig. 7 with isocontours
derived for materials A and B where no plastic hardening is present at strain higher than
approximately 6- 8%%. Indeed. judaing trom GLV results and the previous discussions about
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the size of the plastic zone and the deformation mode at the contact boundary, this could
be expected. It was found, for no hardening matenals and in accord with the Vickers results,
that a local maximum of the von Mises stress occurs below the tip of the indenter. Similar
observations were shown for Brinell indentation of plastic. Levy-von Mises, materials by
Hill ez al. (1989) and 1s also true for Hertz conlact between elastic bodies. Furthermore,
local unloading occurs at the contact surfuce. also u feature that was not present at
indentation of strain hardening materials.

Now we shift our attention to the isocontours tor the hvdrostatic pressure, g,/3, as
they are depicted in Fig. 8 for both small strain (Fig. 3a) und large strain (Fig. 8b). The
small strain results resembles closely the ones devived by GLV for the Vickers test with the
maximum compressive stress appedaring al the contact surface. unloading at the tip and
along the edge of the indenter and with no tensile stresses present. The situation is, however,
quite different for the no hardening materials. [ this case tensile stresses do develop close
to the tip and along the edges of the indenter and thereby creating a possible source for
crack formation during loading. Furthermorc. tor no hardening materials, the maximum
compressive stress is found along the X.-axis below the tup of the indenter and not at the
contact area, as was the case for strain hardening materials (Fig. 8). Regarding the large
strain isocontours outside the region of contuct essentially no difference was found com-
pared to the small strain results. At the tip und «long the edge of the indenter. though the
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curves proved 10 be close to radial and no region of unloading was found. This is an
interesting and somewhat surprising result which will be further addressed when discussing
possible locations for crack formation and growth.

In Fig. 9 the isocontours ol the accumulated plastic strain are shown. Again we can
state that these contours tor Berkovich indentation are very similar to their corresponding
Vickers curves (GLV, 1994) (small und large strain formulation alike). A. perhaps more
interesting, result is that at approximately plastic strains of the order of 30% the shape of
the 1socontours changes. AdmittedIy. this is not a dramatic effect, in fact it is more pro-
nounced m case of a large strain formulation of the problem. as shown in Fig. 9b, but it
does give some further justification tor the use of a representative plastic strain 0.3 in eqns
(17y and (1%). The curves for matenals A and B. with no hardening at large plastic strains,
resemble closely the ones in Fig. v

The final results presented in Fig, 10 are socontours for the von Mises effective stress
(Fig. 10a) tiarge stran). and the hvdrostatic pressure, Fig. 10b (small strain) and Fig. 10c
(large strain). after complete unloading of the material. Again the results are pertinent to
material C. that 1s aluminium 7073- 16 with linear plastic hardening at large strains. The
von Mises stress curves after complete unloading (Fig. 10a) do not give any new information
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of fundamental interest apart trom the fact that clearly no reverse plasticity occurs during
unloading. Essentially they resemble the Vickers curves derived by GLV with local maxima
appearing on the surface outside the contact arca and below the tip of the indenter at the
X,-axis. The small strain results were very similar to the ones depicted in Fig. 10a, also
close to the area of contact.

The 1socontours for the hvdrostatic pressure. atter complete unloading, are definitely
of more direct interest. As can be seen clearly 1 Fig. 10b regions of tensile stresses develop
during unloading even for strain hardening maternials. Those regions are not only present
at the tip (and especially along the edges) of the indenter but also develop well below the
surface. approximately following the boundary between clastic and elastoplastic defor-
mation. The same behaviour was found at Vickers indentation. even though the region of
tensile hydrostatic stresses is not only larger in the present analysis but also includes higher
tensile pressure levels. [t is once again interesting 10 note that the large strain results in Fig.
10c do not show any region of tensile stresses at the tip of the indenter. Again this has
implications for possible crack initiation as will be discussed in some detail below.

It remains then to discuss some aspects of our results related to crack formation during
an indentation test. For this purpose we adoplted a tough criterium for possible crack
formation, demanding that tensile hydrostatic pressure must be present in such a region.
This would suggest that for no hardening matenals (materials A and B), radial or Palmqvist
cracks initiate from the imprint edges during loading while lateral cracks are formed at the
elastoplastic boundary below the surface during unloading. For hardening materials (C
and D). the hydrostatic stress ficld does not imply any cracking during loading but instead
suggests radial or Palmqvist cracking as well as luteral eracking at the elastoplastic boundary
below the surface when unloading is performed. It should be emphasized though that
radial/Palmqvist cracking 1s. for the material characteristics presently analysed, a feature
of the small strain formulation of the problem and no evidence for such crack systems were
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found when analysing the large strain numerical, or the experimental, results, neither at
loading nor at unloading. However. experimental observations of radial crack formation
have been reported by among others Cook and Pharr (1990), but in that case for ceramic
materials. Other possible crack gcometries during an indentation test are half-penny crack-
ing and cone cracking. Presently, for the Berkovich indenter. owing to geometrical reasons,
half-penny cracking can not be predicted. and we found little or no evidence when examining
either the hydrostatic pressure or the maximum principal stress for cone cracking around
the indenter. One possible explanation for this is the fact that we assume frictionless contact
in our analysis. whereas friction might be, as shown by Andersson (1994) for Brinell
indentation. a driving force for cone crack initiation. It should be remembered though, that
the materials most pertinent to the discussion above are brittle ones, for example ceramics,
where von Mises plasticity alone may not be an appropriate constitutive description. The
present results can, however, at least give some qualitative information of possible locations
for crack formations and the sequence of cracking for such materials with loading.
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6. CONCLUSIONS

Berkovich indentation of elastic and elastoplastic materials was analysed numerically
and experimentally. Universal formulae for hardness and total indentation load were
derived from the numerical results showing excellent agreement with experimental findings.
Formulae for determining the elastic stiffness at initial unloading were checked numerically
and found to be reliable regardless of the plastic hardening present, at least for the range
of moderate hardening investigated presently. Mechanical stress and strain fields were
presented showing among other things the size and shape, found approximately spherical,
of the plastic zone and possible locations for crack growth. However, the plastic strain
distribution did not form the commonly assumed concentric spheres. Also the contact area
between material and indenter was computed and proved to be a hyperbola (using six-fold
symmetry) at elastic indentation and almost triangular at elastoplastic indentation.

The Berkovich and Vickers indentation tests proved to be closely related. The main
difference concerned the mode of deformation at the boundary of contact where the effect
of plastic strain hardening was much less pronounced at Berkovich indentation. This feature
also has implications when determining the elastic stiffness at initial unloading as it indicates
that the Berkovich test is more favourable for this purpose, due to the substantially smaller
amount of sinking-in of material at the contact boundary.

Most features of Berkovich indentation were found to be well captured within a small
strain formulation of the governing equations. For example, the small strain universal
formulae for hardness and total indentation load proved to be valid also for results derived
using a large strain formulation of the problem. if simply scaled by a factor of 1.1. However,
for a detailed description of the mechanical fields close to the contact area a large strain
analysis is certainly needed. a feature of importance in particular when crack formation
and growth are of interest.

As for the experimental results the nanoindenter proved to be especially suitable for
obtaining accurate load-displacement curves. and in particular for determining elastic
material constants during the unloading part of the indentation cycle. The nanoindentation
results clearly exhibited size effects for the analysed materials, indicating that higher applied
loads were needed in order to obtain bulk macroscopic plastic material properties. An
important conclusion from the study is that the effects from piling-up and sinking-in cancel
each other in Berkovich indentations large enough to cover several grains. This means that
the yield stress and the characteristic stress at 30% plastic strain can be derived from the
hardness numbers obtained either from total depth under load or from optical measure-
ments of the real residual area. The constitutive behaviour. thus, can be determined from
load—displacement curves obtained by stiff and accurate indentation systems, operating at
high enough loads.
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